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In this study of the temporal stability of Jeffery-Hamel flow, the critical Reynolds 
number based on the volume flux, R,, and that based on the axial velocity, Re,, are 
computed. It is found that both critical Reynolds numbers decrease very rapidly when 
the half-angle of the channel, a, increases, such that the quantity aR, remains very 
nearly constant and aRe, is a nearly linear function of a. For a short channel there can 
be more than one value of the critical Reynolds number. A fully nonlinear analysis, for 
Re close to the critical value, indicates that the loss of stability is supercritical. The 
resulting asymmetric oscillatory solutions show staggered arrays of vortices positioned 
along the channel. 

1. Introduction 
The steady two-dimensional flow of viscous, incompressible fluid within an infinite 

wedge driven by a line source situated at the intersection of the rigid planes that form 
the wedge is termed Jeffery-Hamel flow. The nonlinear governing equation, first given 
by Jeffery (1915) and Hamel (1916), was solved by Fraenkel(1962~1,b). Two types of 
solution were found, namely those which are symmetric under reflection in the 
centreplane of the wedge and those which are asymmetric with respect to such 
reflection. This paper is solely concerned with the symmetric solution, which depends 
upon two non-dimensional parameters: a, the wedge semi-angle; and R = Q/2v ,  the 
Reynolds number based on the volume flux, Q. Different regions of the (a, R)-plane 
were classified by Fraenkel in terms of the number of zeros of the solution. The regions 
which we consider were denoted I, 11,, and IT, by Fraenkel, and we shall see that they 
include the critical Reynolds number for temporal instability. 

Following Dean (1934), Banks, Drazin & Zaturska (1988) considered a perturbation 
of Jeffery-Hamel flow independent of time and having the form rA, where ( r , @  are 
cylindrical polar coordinates with axis at the wedge apex. They solve for h as a function 
of a and R and find that A = 0 leads to the curve B, defined by Fraenkel as the 
boundary between regions 11, and 11,. They interpret this as giving the neutral curve 
for spatial stability. As noted by these authors, this interpretation is not more than 
plausible since the existence of a mode which grows at r = 0 or at r = co is no 
guarantee of spatial instability; indeed if this were the case the results indicate spatial 
instability for any values of a and R. To clarify this point, an initial-value problem in 
which a time-harmonic source of perturbations is switched on at t = 0 and persists to 
t = co should be solved with approyiate boundary conditions at P = 0 and r = co. One 
could then observe if the solution approaches large values as t + 00. Lack of such an 
analysis led Bramley & Dennis (1982) to the incorrect conclusion that the critical 
Reynolds number for spatial instability of plane Poiseuille flow is Re = 5, where Re is 
the Reynolds number based on the centreplane velocity (R = $Re for plane Poiseuille 
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flow). In fact, spatial instability of plane flows requires that they be temporally 
unstable, i.e. Re > 5772 in the case of Poiseuille flow. The 'growing' modes which they 
found instead represent evanescent solutions decaying away from a source of 
perturbations. 

Eagles (1966) investigated the temporal stability of Jeffery-Hamel flow using a 
number of approximations which he claims are valid in the limit a+O. Using these 
approximations, the plane Orr-Sommerfeld equation is obtained, but with a velocity 
profile different from plane Poiseuille flow. The resulting critical Reynolds numbers are 
typically much less than the classical Poiseuille value, Re  = 5772, and we obtain such 
low values also. We shall compare our result to those of Eagles later and, paradoxically, 
find poor agreement when a is small, but reasonable agreement for larger values of a. 

Another approximate method was used by Sobey & Drazin (1986) to study temporal 
instability of the flow. This was based on linearization of a heuristic dynamical model 
due to Hooper, Duffy & Moffatt (1982). Sobey & Drazin find that the resulting neutral 
curve is 3,. Despite the approximations implicit in the work of Sobey & Drazin, our 
exact analysis is in good agreement with their results. In the same paper Sobey & 
Drazin also describe an interesting result for a class of different channel flows using full 
numerical Navier-Stokes simulation and experimental visualization. 

In this paper we treat the exact linear temporal instability of the flow in a finite 
domain rl < r < r2 subject to a two-dimensional perturbation. Banks et al. (1988) 
studied the same problem when R = 0 and found, not surprisingly, that the flow is 
stable. Furthermore, for R = 0 in the limit a + 0 and r1/r2 + 1 they show that the 
smallest non-dimensional temporal decay rate approaches (n/a)'. We shall later 
compare our results with this value. 

The channel flow described by the Jeffery-Hamel solution is usually considered 
infinite in streamwise extent. From a numerical point of view, this creates difficulties. 
Also the boundary conditions to be applied at r = 0 and at r = co are unknown 
a priori. To get around these problems we consider a finite portion of the channel, 
rl < r < re ,  and impose somewhat arbitrary boundary conditions on the perturbation 
at r = rl and r = r2 (see 93 for details). We find that the results converge as r2/r l  + 00 
and we interpret the limiting values as appropriate to an infinite channel. 

When a goes to zero we might expect the result to approach those for plane 
Poiseuille flow. The stability of that flow has been widely studied. Lin (1945a, b)  used 
an analytical method to find the neutral curve in the (kl, Re)-plane, where k ,  is the 
streamwise wavenumber. Thomas (1953) confirmed Lin's results using a finite 
difference method. Later these results were refined by other researchers using more 
accurate and efficient methods, such as Grosch & Salwen (1968) who proposed a 
spectral method using trial functions which comply with boundary conditions, Orszag 
(1971) who expanded the solution in Chebyshev polynomial series, and Mele et al. 
(1981) who used a finite element method. These authors show that the critical Reynolds 
number is Re, = 5772. In order that Jeffery-Hamel flow approaches plane Poiseuille 
flow, we require aRe+O and a+O. At the critical value Re, we therefore need 
a -g (Re,)-' and such small values of a lead to numerical problems with the methods 
used in this paper. For this reason no comparisons with plane Poiseuille flow were 
possible and we do not discuss this issue further. It is worth emphasizing that the values 
of Re, that we find in the range of a considered are much lower than those for plane 
Poiseuille flow. 

Jeffery-Hamel flow and the linear equation governing a small disturbance of the 
usual form e", where s is the complex growth rate, are introduced in 92. The special 
case of steady modes (i.e. s = 0) of the form rA is also discussed. The numerical method 
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used to solve the linear equation for a small unsteady disturbance is presented in $3 .  
The main objective is to compute the critical Reynolds number: the linear equation is 
solved using an expansion in trial functions which complies with the boundary 
conditions, leading to an algebraic eigenvalue problem which is solved using the 'QZ'  
method. Section 4 contains the result of the linear analysis and a comparison with 
Eagles' (1966) method and the Hooper et al. (1982) model. 

In 95, the nonlinear behaviour of the flow perturbation is considered using an 
expansion in the linear eigenfunctions, projection onto the adjoint eigenfunction and 
truncation. The interaction between stable and unstable modes is discussed. For 
Reynolds numbers above the critical value, time-periodic and quasi-periodic solutions 
occur. For Reynolds numbers below critical, we find that the perturbation died away 
in all cases we computed. This suggest that, unlike plane Poiseuille flow, Jeffery-Hamel 
flow is supercritical unless the value of a is very small (smaller than those considered 
here). Finally plots of the stream functions of the nonlinear solution are given. 

2. Basic equations 

kinematic viscosity v. In terms of $, the vorticity equation is 
Let $! be the stream function of two-dimensional flow of an incompressible fluid of 

where cylindrical polar coordinates ( r ,  6) are used. We introduce dimensionless scaled 
variables, y = 8/01, p = r / r 2  and T = vt/ri ,  where a is the semi-angle of the channel, t 
is time and r2 is a distance which is arbitrary at this stage, but will be specified later as 
the outer radius of the flow domain. 

2.1. Jeffery-Hamel flow 
The basic flow is driven by a given steady volume flux (2 between two rigid walls, 
6' = fa. The boundary conditions of no slip and impermeability are 

$=-tie, $ @ = O  at 8=fcc. (2.2) 

G,,,, + 4a2G,, -k 2aRG, G,, = 0, (2.3) 
G = f l ,  G,=O at ~ = + 1 .  (2.4) 

We write $ = iQG(y),  and R = Q/2v as the Reynolds number based on the flux. 
Equation (2.1) with the boundary conditions (2.2) becomes 

The flow described by the system (2.3) and (2.4) is Jeffery-Hamel flow and has been 
classified by Fraenkel(1962a, b) into types I, 11,, 111,, IV,, V,. We will focus attention 
on the stability of the flow in the regions of parameter space denoted by I, II,, and XI,. 
The solutions of the system (2.3) and (2.4) are also discussed by Hooper et al. (1982) 
using a numerical method which, in our view, is easier to follow than the elliptic 
functions of Fraenkel (1962a, b). 

2.2. l h e  linear equation for the perturbation 
Taking the Jeffery-Hamel solution as the basic flow, we substitute $ = fQ(G+ v)  into 
(2.1) and neglect nonlinear terms in J,Y; we find 

with $'=O,  $ h = O  at y = + l .  (2.6) 
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To complete the system, there should also be boundary conditions at r = 0 and 
r = co in the case of an infinite channel and at r = Y, and r = T,  for the finite channel. 
The precise boundary conditions for an infinite channel are not obvious, and we state 
those for a finite channel in $3. 

2.3. Temporal instability 
Unsteady normal modes may be taken of the form f = exp (s7) @(p,y). Equations 
(2.5) and (2.6) become 

(2.7) 

with @ = O ,  @ , = O  at y = + l .  (2.8) 
As usual the flow is judged temporally unstable if one or more of the possible values 

of s have positive real parts. 
2.4. Steady solutions 

Following Dean (1934), steady normal modes (s = 0) of the form $' = p"$( y )  can be 
found. Equations (2.5) and (2.6) become 

$,,,, + aZ(h2 + ( A  - 2)2) &,, + a4h2(h - 2)2$ 
- aR(h - 2)  GV($,, + a2h2$) + aRhG,,, $ + 2aG,, $, = 0.  (2.9) 

with @-'=O, $',=O at y = + l .  (2.10) 

Banks et al. (1988) used both numerical and analytical methods to solve the system 
(2.9), (2.10) and interpreted their results as showing that the curve B, (which was 
introduced by Fraenkel 1962a, b as the boundary between domains 11, and 11,) gives 
the onset of spatial stability. We have expressed our reservation as to this interpretation 
in the introduction. 

3. Numerical method 
As stated in $2.2: the unique boundary conditions applied at r = 0 and Y = rx, for an 

infinite channel are not obvious and for this reason, and for the sake of numerical 
simplicity, we introduce a finite channel, r ,  < r < r, .  Using the scaled non-dimensional 
coordinates introduced previously the channel occupies - 1 < y < 1 ,  p, < p < 1 ,  
where p1 = r l / r z .  We introduce the dimensionless parameter d = 1 -pl, which 
represents the length of the channel (0 < A < 1 ) .  

Let F be the function F(y)  = Gy( y)/G,(O) and Re = raU,/v the Reynolds number 
based on the centreplane velocity U,, which, according to Batchelor (1977, p. 295), gives 
a more direct measure of the intensity of the flow than R. For a symmetric solution of 
Jeffery-Hamel flow, (2.3) and (2.4) become 

with 
G,, + 4a2Fy + 2aReFFy = 0 ,  

F, = 0 at y = 0, 

F = l  at y = O ,  
F = O  at y = - 1 .  

In terms of the function F, we can easily obtain a relationship between the two 
Reynolds numbers R and Re defined previously: 

R = +Re r' F( y )  dy. (3.5) 
-I 

To obtain the function F( y )  we solve the first integral of (3.1) (for which the constant 
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of integration can be obtained in terms of F,(- 1) using (3.2)-(3.4)) numerically using 
fourth-order Runge-Kutta and the ‘shooting’ method. This provides the basic flow by 
iteration, starting from (3.4) and an estimate of I$( - 1). The estimate was obtained as 
follows. For Re = 0 the solution is known analytically and, with a = 0.1, we varied aRe 
in small increments away from zero to cover the interval 0 < aRe < 45, iterating at 
each stage. For values of 01 < 0.5 rad and Re different from those computed but whose 
product is in the given range, we obtained the initial $( - 1) by forming the product 
aRe and using the value appropriate to the nearest of the computed aRe. 
Newton-Raphson iteration was then used to determine the true value of F,( - 1). In all 
cases the iteration converged rapidly when aRe was in the given interval. 

Using F, (2.7) and (2 .8 )  for the perturbation become 

with @ = O ,  @ , = O  at y = f l .  (3 .7)  
As discussed in $2.2 we need boundary conditions at r = r1 and r = r2 to complete 

the problem. Two distinct types of somewhat arbitrary conditions are used. The first 
are the simplest conditions, namely 

@,,= @ = O  at p = p l ,  (3.8) 

with @,,=@=O at p = l ,  (3.9) 

W P l )  = @(I), (3.10) 
and will be referred as zero boundary conditions. The second are 

q P J  = @p(l), (3.11) 

and will be called ‘periodic’ boundary conditions (of course, the solution outside the 
range p1 < p < 1 would not be periodic). Later we will see that the results converge as 
r2/rl+ 03, i.e. A + 1, and become dependent only on the parameters a and R. 

The function @ is expanded as a linear combination of basis functions which comply 
with the boundary conditions. Because the basic flow is symmetric under reflection in 
y = 0 the eigenfunction, @, is either symmetric or antisymmetric in y. The symmctnc 
solutions have the form 

while the antisymmetric functions are 

(3.12) 

(3.13) 

Following Hamadiche (1985) the basis functions X i ,  Yi are particular solutions of the 
Orr-Sommerfeld equation for plane Poiseuille flow when the wavenumber in the 
streamwise direction is zero; they are given by 

and sinh (qy) - sin (pi y )  
sinh(q) sin(p,) ’ 

Y,(u)= . 

Here yz, /Iz are respectively the real positive solutions of the equations 

(3.14) 

(3.15) 

q tanh (4) + yi tan (7%) = 0 (3.16) 
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and q Goth (4) - /!Ii cot ( p i )  = 0 (3.17) 

and q is an arbitrary real constant which we take equal to 2. The functions Xi ,  5 are 
used simply because they form a convenient complete set on the interval - 1 < y < 1,  
such that they and their first derivatives are zero at the end points y = f 1. 

and Qj depend upon the type of boundary conditions used. 
When the zero boundary conditions (3.8) and (3.9) are employed we take 

<(PI = q x ( P > >  (3.18) 

and Q ~ ( P )  = ~ ( x ( P > ) ,  (3.19) 

The basis function 

where 

For the second type of boundary condition 

q P )  = cos G Z X ( P ) )  

(3.20) 

(3.21) 

and Qj( p )  = sin cj71x( p)). (3.22) 

The expansion for @ is introduced into (3.6), the result is multiplied by either X,(y)  
or yi( y ) ,  depending upon the symmetry of @, and the result is integrated over y ; further 
multiplication by either G(p) or Q j ( p )  and integration over p yields a set of linear 
equations of the form sZ< = A< (3.23) 

for the coefficients aij and b, represented by the column vector 5. The eigenvalues and 
eigenfunctions of the above system are obtained by the 'QZ method. 

When we come to discuss the nonlinear stability problem we will need the adjoint 
linear eigenfunctions. These are determined by the solutions of the adjoint eigenvalue 

problem: s-wcA = ( ITSA (3.24) 

which has the same eigenvalues as (3.23). Here F represents a matrix transpose and 
<A is the vector of coefficients of the adjoint eigenfunction with the same basis functions 
as before. 

According to Banks et al. (1988). s is real and negative when the Reynolds number 
is zero. We denote the largest value of the real part of s by ss. The range of Reynolds 
numbers which we wanted to cover was subdivided into a large number of segments 
and interval halving on each segment used to find any zeros of sg. This procedure gives 
the value (or values) of Re,. 

4. Results and discussion 

When the Reynolds number is taken equal to zero, the linear stability problem does not 
contain the basic flow, as can be seen from (3.6). Banks et al. (1988) proved that when 
Re = 0 and both a and d go to zero, sg tends to - ( ~ / a ) ' .  Below, we compare this limit 
with our numerical evaluation of sg, using zero boundary conditions. 

With a = lo-*, and p1 = 0.99 Banks et al. found that a'sg = -9.96 by numerical 
integration. Our result, using zero boundary conditions, is identical, see table 1. 

4.1. The case Re = 0 

4.2. Comparison with Hooper et al.'s model 
Rather than the exact linear problem (3.6), (3.7), Hooper et al. (1982), and Sobey & 
Drazin (1986) considered a nonlinear model, namely 

with 
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FIGURE 1.  (a) A plot of the critical Reynolds number R,, based on the volume flux, against the half- 
angle of the channel, a :  -, the present method using zero boundary conditions; ---, the present 
method using periodic boundary conditions; ......, Eagles; ----, Sobey & Drazin using Hooper et al.’s 
model. A = 0.999 in calculations using the present method. (6) As (a )  but showing aRc instead of R,: 
-, the present method using zero boundary conditions ; ----, the present method using periodic 
boundary conditions; ......, Eagles; ---. Sobey & Drazin using Hopper P t  al.’s model. 

a 0.2 0.1 0.01 0.001 0.0001 

a?Tg - 15149 - 3722 -39.13 -9.52 -9.96 

TABLE 1. Numerical evaluation of a2sg. According to Banks ez al. (1988) the limit i s  -rt2 when 
a i 0 ,  d i  1. 

Among other results, Sobey & Drazin (1986) showed that if (4.1) is linearized using 
Jeffery-Hamel as the basic flow, it results in the curve B, for the temporal neutral 
curve. In figure 1 (a) we compare this result with the neutral curve given by the present 
method. The results are in surprisingly good agreement. 
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a 
FIGURE 2. (a) The critical Reynolds number Re, based on axial velocity as given by the present 
method: -, zero boundary conditions; ...... periodic boundary conditions. A = 0.999 in both 
cases. (b) As (a) but showing aRe, instead of Re,. 

4.3. Main results 
In figure l ( a )  we compare the critical Reynolds numbers based on the volume flux 
obtained by Eagles (1966) and given by the present method using 12 trial functions in 
each direction. The results shown are for A = 0.999, corresponding to a long channel, 
as an approximation of Eagles’ unbounded channel. Note that the results are in 
agreement for the larger values of a (a  > 0.15 rad), while for small values of a 
(a < 0.15 rad) our method, using both zero and periodic boundary conditions, predicts 
a higher critical Reynolds number; this may be because, in spite of the fact that Eagles’ 
approximation is supposedly valid only when a is small, the argument of the 
exponential term in equation ( 5 )  of his paper may go to infinity in an unbounded 
domain even for small a, and cannot then be neglected. 

In figure 1 (b) we plot the same data shown in figure 1 (a) in the plane (aR,, a). Both 
our results and those given by the model of Hooper et al. show that the product aR, 
is very nearly a linear function of a, while Eagles’ results are in disagreement. 

Figure 2(a) shows the critical Reynolds number based on the axial velocity Re, for 
both zero and periodic boundary conditions and A = 0.999. The critical Reynolds 
number decreases rapidly with increasing a. Note that the corresponding neutral mode 
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FIGURE 3 .  The critical Reynolds number obtained using different numbers of trial functions M 
( N ,  = N ,  = $M). Re, is the critical Reynolds number based on the axial velocity, R, the critical 
Reynolds number based on the volume flux. Zero boundary conditions and A = 0.999. (a) a = 0.5, 
(6) a = 0.1. 

is symmetric with respect to y .  The difference between the critical Reynolds number 
obtained using zero and periodic boundary conditions is small but greater than the 
numerical error and becomes more apparent in the (aRe,, a)-plane (see figure 2b). The 
difference between the two critical Reynolds numbers is about 10 %. 

In figures 3 (a)  and 3 (b) we plot the critical Reynolds number using different numbers 
(M = 2N, = 2NJ of trial functions for a = 0.5 rad, 0.1 rad respectively and d = 0.999. 
It will be seen that the value of the critical Reynolds number does not change once M 
is greater than 12. The value A4 = 12 was therefore used for the calculations. 

Obviously the critical Reynolds number depends on the parameter d. As discussed 
in the introduction, it is more natural to consider Jeffery-Hamel flow in an infinite 
channel than in the finite one used here. For this reason, we mostly consider the limit 
r2 / r1  +. 00 or equivalently A +. 1, a limit which we approach by taking A very close to 
1. However, when A is smaller, there can be more than one branch of the neutral curve, 
as shown in figure 4 for A = 0.9. In this case there are multiple regions of instability; 
however, we found that this behaviour did not occur when A = 0.999, the value we 
have mainly used. 
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FIGURE 4. A plot of the critical Reynolds number Re, in the plane (Re,, a) for A = 0.9. There are 
two branches labelled (a) and (b)/(c). Zero boundary conditions. 

Figure 5 shows the critical Reynolds number as a function of d near 1 and indicates 
that a limit is approached as d + 1 for a = 0.1 rad. The product aRe, decreases slowly 
with increasing d, while the product aR, is very nearly constant. Unfortunately taking 
d greater then 0.999 introduces a significant numerical error. 

Figure 6 shows typical streamlines which result from summing the velocity fields of 
the basic flow and growing perturbation given by linear theory. The perturbation 
amplitude is, of course, not fixed by linear theory, and the mode grows exponentially 
with time. The amplitude was chosen so that the effect of the perturbation was 
significant but not dominant. Strictly speaking, nonlinear theory should be used for 
such a large perturbation amplitude (a topic we take up in $ 5 ) ;  however, similar 
patterns to those shown in figure 6 were observed both experimentally and numerically 
by Sobey & Drazin (1986) in divergent channels with curved walls. Note that an 
important effect of these patterns is that the flow section is restricted and diverted by 
the presence of vortices and the flow deceleration is consequently less than for the basic 
flow alone. 
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FIGURE 6 .  The sum of the basic flow and the growing mode according to linear theory - the mode 
amplitude is arbitrary. OL = 0.1 rad, A = 0.999. 

4.4. Qualitative discussion of some experimental results 
If the patterns of flow described above persisted to large Reynolds number, it might 
explain the fall in performance of diffusers established experimentally by Carlson, 
Johnston & Sagi (1967) and Reneau, Johnston & Klim (1967), a point we now 
elaborate. 

Let the pressure coefficient be C, = (P, - P,)/($pU2),  where P,, PI are the pressure at 
the outlet and inlet sections respectively and Uis the inlet velocity based on the volume 
flux. Carlson et al. (1967) showed experimentally using five different values of a that 
the pressure coefficient takes its greatest value when a = 0.091 rad. The same result was 
obtained by Reneau et al. (1967). In Table 2 we give the characteristics of five diffusers 
used by Carlson et al. (1967) and Reneau et al. (1967) and the critical Reynolds number 
for each diffuser according to the present analysis. 

Given ideal irrotational flow of an inviscid fluid, the pressure coefficient of a diffuser 
would increase with a. However, the real flow is not ideal and the coefficient was found 
to initially increase as a was increased from 0, then decrease again. Viscosity leads to 
energy loses, but more importantly the flow can separate from the walls of the diffuser 
leading to a drop in efficiency. Separation is accompanied by recirculation zones near 
the walls and we believe that the vortex structures apparent in figure 6 (and the 
corresponding non-linear results, figures 8 and 10, which we will discuss in the next 
section) are low-Reynolds-number precursors of separation. 

Classical laminar boundary layer theory (as described in, for instance, White 1974) 
for a Falkner-Skan profile predicts separation when the angle a exceeds a, = -$n, 
where p = -0.199, leading to a, = 0.312 rad. This is considerably larger than the value 
of a at which the diffuser efficiencies are observed to decrease. Furthermore, the 
laminar boundary layer thickness for such small angles can be estimated using the 
value 6* / r  = O((Re,)-$. The thickness calculated in this way is much too small to 
explain the observed loss of efficiency. Turbulent boundary layers tend to be even less 
susceptible to separation. In summary, classical results for separation seem inadequate 
to account for the drop in pressure coefficient. 

We suggest that separation in diffusers and their consequent loss of efficiency may 
be due to an instability of the whole flow of the type considered in this paper, with the 
resulting vortices being the manifestation of separation. Of course, the present study 
does not extend to the very high Reynolds numbers of the experiments. 

We should also mention work by Rodrigues (1990) who used a finite element method 
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C 
CP C P  

Carlson Reneau 
a (rad) et al. et al. Idla1 Rc Re, 
0.066 0.58 0.61 0.69 74.2 151.5 
0.091 0.62 0.65 0.77 53.8 110.9 
0.116 0.59 0.63 0.82 42.2 87.7 
0.14 0.55 0.60 0.86 35 73.1 
0.165 0.50 0.53 0.88 29.6 62.3 

TABLE 2. Characteristics of diffusers used by Carlson et al. (1978), and Reneau et al. (1967). C, is the 
pressure coefficient, R, the critical Reynolds number based on volume flux and Re, the critical 
Reynolds number based on the axial velocity. 

with boundary conditions derived from several wall turbulence models to compute the 
pressure coefficient. Good agreement with experiment was found using Meller's law 
and Nakayama's law, but the logarithmic law failed. 

5. Nonlinear analysis 
Our aim here is on the one hand to understand the nature of the instability when its 

amplitude has grown beyond the linear range, and on the other hand to study the 
interaction between stable and unstable modes. To this end we keep nonlinear terms 
and derive the nonlinear equivalent of the perturbation equation (2.5). Since we are 
now concerned with nonlinear equations, for which the absolute magnitude of $' is 
significant, it is convenient to define a non-dimensional perturbation by 

where L(4.') is that part of the linear operator that does not involve time: 

and N($', 4) is the nonlinear part, whose detailed form we do not give here owing to 
its length. The perturbation stream function 4' is expanded as follows: 

where the functions $i are the eigenfunctions of the linear problem (3 .6)  (both 
symmetric and antisymmetric with respect to y).  Eigenfunctions satisfying either zero 
or periodic boundary conditions may be used. For further reference when discussing 
the results it is convenient to normalize the $t by requiring (& $J = 1 ,  where 

( A x )  = Jl d q  td*,X)dP (5 .5)  
-1 -1 is a scalar product. 

fact that they are orthogonal to V2& we obtain the following system: 
After scalar multiplication of (5.2) by the adjoint eigenfunctions $f and using the 
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FIGURE 7. The amplitudes A ,  as a function of viscous time 7 for tl = 0.1 rad and A = 0.999, using 

periodic boundary conditions: (a) real parts of A,, (h) imaginary parts of Ai. 

where si is the eigenvalue of the linear system (3.6)-(3.8) corresponding to the 
eigenfunction Q6. For future reference when we come to describe the results, the modes 
are numbered as follows. Modes for which c j t  is antisymmetric with respect to y are 
labelled 1,3,5, ..., while those which are symmetric in y are labelled 2,4,6, .. . . Modes 
of a given symmetry are in decreasing order of Re(s), i.e. the most rapidly growing or 
least rapidly decaying come first. Modes for which s is not real occur twice as a 
complex-conjugate pair and therefore both modes of the pair have the same value of 
Re(s). Which of the pair comes first in the ordering is left arbitrary. 

The solution of (5.6) depends on a, A ,  Re and the initial conditions. Equation (5.6) 
was solved by a fourth-order Runge-Kutta method. For Reynolds numbers slightly 
smaller than the critical value of linear theory, the disturbance was found to approach 
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X 

FIGURE 8. The stream function in a divergent channel. Nonlinear solution using periodic 
boundary conditions: s( = 0.1 rad and A = 0.999 at r = 0.004. 

zero for all initial conditions we tried (with zero boundary conditions, a = 0.3, 
d = 0.999 and N = 20). This strongly suggests that the flow is globally stable for 
Re < Re, and that the critical Reynolds number gives a supercritical bifurcation. The 
contrast with plane Poiseuille flow (for which the onset of instability is subcritical) is 
striking. The change in the nature of the instability is no doubt connected with the large 
reduction in the critical Reynolds number (to about 35 from 5800 for the parameter 
values quoted above). As a is decreased, the planar result must, of course, be eventually 
recovered, but as mentioned in the introduction this requires very small values of a, 
below the range of applicability of the numerical methods used. 

When the Reynolds number is slightly greater than its critical value, we expect 
equilibration of the perturbation amplitude for a supercritical bifurcation. This is 
indeed what we find: 

Case 1 
For a = 0.1 rad, A = 0.999 and periodic boundary conditions the critical Reynolds 

number is Re, = 11 1.4, at which growing linear modes appear, while for Re = 140 
there are two conjugate pair of symmetric growing modes. We take N = 8 in (5.6), and 
consider the four growing symmetric modes together with four antisymmetric modes 
which are chosen to be the least rapidly decaying according to linear theory. The initial 
conditions were that the amplitude of the most rapidly growing symmetric mode and 
its conjugate be A ,  = A: = 0.001 (1 + i) and that all other modes have zero amplitude. 
The time step is adjusted at each stage according to the amplitude of the perturbation. 
Thus we choose 

(AT),  = (AT)",/[ 10 (: 1AJ2)t], 
i=l 

(5.7) 

where the Ai are the values at the preceding step and (AT)" = lo-''. We found that the 
solution approached a periodic limit cycle whose form is shown in figures 7(n) and 7b), 
which give the A? as a function of 7. Increasing the number of modes to N = 12 did not 
change these results noticeably. 

In figures 7(n)  and 7(b) it can be seen that the symmetric growing mode (i = 2) is 
dominant as we might expect from weakly nonlinear theory close to criticality. Figure 
8 shows the streamlines of the flow at one instant of the quasi limit cycle. The term 



0.600 

+ 0.375 
41 
3 
w 

85 

_ ..................................... ~ ......................................................... .... . 
- (6) 

- - - -8- i i=4 

- ..................................... ~ ........................................ 

FIGURE 9. The amplitudes Ai as a function of viscous time r for a = 0.3 rad and A = 0.999, using 
zero boundary conditions : (a) real parts of A,, (b) imaginary parts of Ai. 

quasi-periodic was used above because, in addition to the oscillations shown in figures 
7(u)  and 7(b)  we also found slower modulations of the modal amplitudes. The 
timescale for these modulations was of the same order of magnitude as the time 
required for the basic flow to go the length of the channel. The spatially periodic 
boundary conditions may be the cause of these temporal modulations, a disturbance 
which runs the length of the channel being reinjected at the inlet. 

Case 2 
In this example 01 = 0.3 rad and A = 0.99 giving a critical Reynolds number of 

Re, = 35.2. For Re = 40 and using zero boundary conditions, the linear problem has 
a conjugate pair of symmetric growing modes. We again consider the interaction 
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FIGURE 10. The stream function in a divergent channel. Nonlinear solution using zero boundary 

conditions; SL = 0.3 rad and A = 0.999 at 7 = 0.05. 

between eight modes which include the two growing as well as the two least rapidly 
decaying symmetric modes and the four least rapidly decaying antisymmetric modes. 
The initial amplitude of the single least rapidly decaying symmetric mode is A ,  = 0.001 
whereas all the others are zero. The step time is adjusted as described above, with 
 AT)^ = lo-'. Increasing the number of modes to N = 12 did not lead to noticeable 
changes. 

Figures 9 (a) and 9 (b) show the Ai (i = 1, . , . ,4) as a function of 7 for the resulting 
strictly periodic limit cycle. Perhaps surprisingly the amplitudes of the growing modes 
are of the same order of magnitude and smaller than those of the decaying modes. Note 
that for the zero boundary conditions we found no slow aperiodic modulations. 

Figure 10 shows the streamlines a t  one instant of the limit cycle. The pattern is 
somewhat similar to that shown in figure 8 but there are fewer vortices. 

6 .  Conclusions 
The temporal instability of symmetric Jeffery-Hamel flow in a divergent channel 

with a source located at the apex of the wedge has been treated. It was found that the 
critical Reynolds number depends on the length of channel, which is represented by the 
non-dimensional parameter d. For d = 0.9 we found multiple regions of instability in 
the (Re, a)-plane, where Re is the Reynolds number based on the axial velocity and a 
is the half-angle of the channel (see figure 4). These regions disappeared when 
d = 0.999 as shown by figures l(a) and 2(a). 

It has been shown that the critical Reynolds number based on the axial velocity, Re,, 
and that based on the volume flux, R,, decrease very rapidly with the increasing a and 
that both aRe, and aR, are very nearly linear function of cy. as shown in figures 1 (b) and 
2(b). From the neutral curves we deduce that Jeffery-Hamel flows of types I and TI, 
are stable, while flows of type 11, are unstable. 

The neutral curves obtained by the present method for d = 0.999 are in good 
agreement with the result of Sobey & Drazin (1986) using the model of Hooper et al. 
(1982), while they are in disagreement with the Eagles' (1966) results for small a. 

The somewhat limited number of cases for which we were able to carry out nonlinear 
calculations (owing to constrained computed resources) suggest that the critical 
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bifurcation is supercritical. When the Reynolds number was greater than the critical 
value an asymmetric, time-periodic or quasi-periodic solution appeared. These 
oscillatory solutions are interpreted as precursors of flow separation and may explain 
the drop in the efficiency of diffusers established by experiment. 

It is interesting to observe that Sobey & Drazin (1986) found the critical bifurcation 
to be subcritical, in disagreement with the result obtained here. It should however be 
borne in mind that their analysis was based on a model problem, rather than derived 
from the Navier-Stokes equations. Indeed, they found that a numerical calculation for 
a channel flow using the latter equations showed a supercritical bifurcation, in 
agreement with our results. This contrasts with plane Poiseuille flow for which there is 
a subcritical bifurcation. 

Presumably the case of plane Poiseuille flow would result from strict application of 
the mathematical limit a -+ 0; however, as described in the introduction, the high value 
of the critical Reynolds number requires very small values of a = O(Re;l), which we 
have been unable to attain using the numerical methods described here. It would be 
interesting to investigate the way in which the transition from the subcritical 
bifurcation and large critical Reynolds numbers of plane Poiseuille flow to the 
supercritical bifurcation with moderate values of the critical Reynolds number found 
here occurs. 
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